Skip to main content

Model Fitting Under Patterned Heterogeneity of Variance

Buy Article:

$29.50 plus tax (Refund Policy)

Abstract:

Two approaches toward fitting regression models with multiplicative error heteroscedasticity recur in the forestry, ecology, and statistical literature. One includes the estimation of the heterogeneity in the fitting process. The alternative approach entails the use of variance estimators that are robust to the error variance heterogeneity. Under suitable conditions, the former method offers nonnegligible gains in efficiency, whereas the robust alternatives provide accurate assessment of ordinary least squares estimators even in the presence of heteroscedasticity. The performance of both approaches are examined and contrasted, and suggestions for future applications and research are made on the basis of these results. For. Sci. 35(1):105-125.

Keywords: Weighted least squares; bootstrap; heteroscedasticity; jackknife

Document Type: Journal Article

Affiliations: Research Scientist with Westvaco Corporation, Summerville, SC 29484

Publication date: March 1, 1989

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2015 Impact Factor: 1.702
    Ranking: 16 of 66 in forestry

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more