Skip to main content

PPS and Random Sampling Estimation Using some Regression and Ratio Estimators for Underlying Linear and Curvilinear Models

Buy Article:

$21.50 plus tax (Refund Policy)

Two thousand samples of 30 units were drawn from selected populations for which linear or curvilinear underlying models were postulated between the variable of interest and a covariate. Ratio, and linear and nonlinear regression estimators were compared for bias and relative efficiency of the estimates generated. Regression estimators were found to be the most precise estimators of totals for both random and probability proportional to size (PPS) sampling for a series of tree populations for samples of size 30. The weighted regression estimator in PPS sampling was consistently more efficient than the standard Horvitz-Thompson estimator. For the populations studied, the nonlinear and polynomial regression estimators were not efficient except in very specific cases, probably due to the absence of clear nonlinear trends in most of the populations. (Such nonlinear or curvilinear models do exist in specific stands for certain variables.) The quadratic polynomial regression estimator had the smallest variance in the case where a clear nonlinear relationship existed in the population for the variable pair considered. A general nonlinear regression estimator was inefficient for a population with a nonlinear relationship. Generally, estimation bias was small and coverage probabilities (containing the parameter of interest) were high for all estimators and populations. Jackknife variance estimates were not consistently better than the classical variance estimates of the true variances for any of the estimators. For. Sci. 33(4):997-1009.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Horvitz-Thompson estimator; Linear and nonlinear regression estimators; bias; relative efficiency; sampling; simulation

Document Type: Journal Article

Affiliations: Statistician, Statistical Consulting Service, 3004 Northwest Oceania Drive, Waldport, OR 97394

Publication date: 1987-12-01

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more