Skip to main content

MCMC-based estimation of Markov Switching ARMA-GARCH models

Buy Article:

$53.17 plus tax (Refund Policy)

Abstract:

Regime switching models, especially Markov Switching (MS) models, are regarded as a promising way to capture nonlinearities in time series. Combining the elements of MS models with full Autoregressive Moving Average-Generalized Autoregressive Conditional Heteroskedasticity (ARMA-GARCH) models poses severe difficulties for the computation of parameter estimators. Existing methods can become completely unfeasible due to the full path dependence of such models. In this article, we demonstrate how to overcome this problem. We formulate a full MS-ARMA-GARCH model and its Bayes estimator. This facilitates the use of Markov Chain Monte Carlo methods and allows us to develop an algorithm to compute the Bayes estimator of the regimes and parameters of our model. The approach is illustrated on simulated data and with returns from the New York Stock Exchange (NYSE). Our model is then compared to other approaches and clearly proves to be advantageous.

Document Type: Research Article

DOI: https://doi.org/10.1080/00036840802552379

Affiliations: 1: University of Karlsruhe and KIT, Germany,WestLB AG, London, UK 2: University of Karlsruhe and KIT, Germany,University of California, Santa Barbara, CA, USA 3: Yale School of Management, New Haven, CT, USA 4: Finanalytica, FinAnalytica Inc., USA

Publication date: 2011-02-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more