Skip to main content

Bias and precision in the DEA two-stage method

Buy Article:

$47.50 plus tax (Refund Policy)

In Data Envelopment Analysis (DEA), the two-stage method is a popular procedure for accounting for exogenous influences on efficiency. With the conventional two-stage method, a DEA is first conducted using only traditional (endogenous) inputs and outputs. Then, the first-stage DEA scores are regressed on the environmental/contextual (exogenous) inputs of interest. The regression outcomes are used to identify exogenous inputs that influence the first-stage DEA scores to a statistically significant degree, and to adjust DEA scores to account for these influences. Herein, it is demonstrated empirically that the conventional method exhibits substantial bias and low precision, with the degree of bias and precision affected by input variance and correlation. A reverse two-stage procedure that yields estimates without the bias and precision problems that compromise the validity of the conventional method's estimates is suggested.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Managerial Studies and Department of Information & Decision Sciences, College of Business Administration (MC 243) University of Illinois at Chicago, Chicago, IL 60607-7123, USA 2: Department of Information Systems & Technology, College of Business Administration, Creighton University, Omaha, NE 68178, USA

Publication date: 01 September 2008

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more