Skip to main content

Exchange rates forecasting: local or global methods?

Buy Article:

$47.50 plus tax (Refund Policy)

Exchange rates forecasters usually assume that local methods (nearest neighbour) dominate the global ones (neural networks or genetic programming, for example). In this article, first, we use different generalizations of the standard nearest neighbours to predict the dynamic evolution of the Yen/US$ and Pound Sterling/US$ exchange rates one-period ahead. Second, we compare our results with those employing global methods such as neural networks, genetic programming, data fusion and evolutionary neural networks. Finally, we find out the existence of predictable structures  periods ahead. Our results reveal a slightly but significant forecasting ability for one-period ahead which is lost when more periods ahead are considered, and no important predictive differences between local and global methods have been found.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Economics, Columbia University, New York, NY 10027, USA

Publication date: 2008-08-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more