Exchange rates forecasting: local or global methods?

$53.17 plus tax (Refund Policy)

Buy Article:


Exchange rates forecasters usually assume that local methods (nearest neighbour) dominate the global ones (neural networks or genetic programming, for example). In this article, first, we use different generalizations of the standard nearest neighbours to predict the dynamic evolution of the Yen/US$ and Pound Sterling/US$ exchange rates one-period ahead. Second, we compare our results with those employing global methods such as neural networks, genetic programming, data fusion and evolutionary neural networks. Finally, we find out the existence of predictable structures  periods ahead. Our results reveal a slightly but significant forecasting ability for one-period ahead which is lost when more periods ahead are considered, and no important predictive differences between local and global methods have been found.

Document Type: Research Article


Affiliations: Department of Economics, Columbia University, New York, NY 10027, USA

Publication date: August 1, 2008

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more