Skip to main content

Finite sample bias of the least squares estimator in an AR(p) model: estimation, inference, simulation and examples

Buy Article:

$47.00 plus tax (Refund Policy)

This paper shows that the first order bias of least squares estimators of the coefficients of an AR(p) model is important for 'typical' macroeconomic time series and proposes a simple to apply method of bias reduction. Biases in individual coefficients often cumulate in the sum with far-reaching consequences for the cumulative impulse response function. This function, being nonlinear in the underlying coefficients, is particularly sensitive to biases when, as is often the case, the shocks are long-lived. Simulations and examples demonstrate some of the magnitudes involved.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2000-12-15

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more