Skip to main content

Comparative accuracy of forecasts of inflation: a Canadian study

Buy Article:

$55.00 plus tax (Refund Policy)


An inaccurate forecast of inflation is costlier to economic agents when the inflation rate is high and volatile. In this situation, the use of more sophisticated and information-oriented forecasting models become economically efficient. We test this hypothesis by analysing the forecasting accuracy of vector auto-regressive (VAR), auto-regressive integrated moving average (ARIMA) and static expectation models. We use Canadian data and divide the post-sample forecasting period into four sub-periods, based on high/low and volatile/stable inflation. Prediction errors are compared for both short-term and long-term forecasts. Finally, the paper proposes a portfolio approach for obtaining a more accurate forecast of inflation.

Document Type: Research Article


Publication date: 1996-12-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more