Skip to main content

Top-down guidance of visual search: A computational account

Buy Article:

$47.00 plus tax (Refund Policy)

We present a revised version of the Selective Attention for Identification Model (SAIM), using an initial feature detection process to code edge orientations. We show that the revised SAIM can simulate both efficient and inefficient human search, that it shows search asymmetries, and that top-down expectancies for targets play a major role in the model's selection. Predictions of the model for top-down effects are tested with human participants, and important similarities and dissimilarities are discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Behavioural Brain Sciences Centre, University of Birmingham, Birmingham, UK

Publication date: 2006-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more