Skip to main content

Landscape Controls on Structural Variation in Eucalypt Vegetation Communities: Woronora Plateau, Australia

Buy Article:

$55.00 plus tax (Refund Policy)

Quantification of landscape-based vegetation structural variation and pattern is a significant goal for a variety of ecological, monitoring and biodiversity studies. Vegetation structural metrics, derived from airborne laser scanning (ALS or aerial light detection and ranging—LiDAR) and QuickBird satellite imagery, were used to establish the degree of plot-based vegetation variation at a hillslope scale. Topographic position is an indicator of energy and water availability, and was quantified using DEM-based insolation and topographic wetness, respectively, stratifying areas into hot-warm-cold and wet-moist-dry topographic classes. A range of vegetation metrics—maximum and modal canopy height, crown cover, foliage cover, NDVI and semivariance—were compared among randomly selected plots from each topographic class. NDVI increases with increasing landscape wetness, whereas ALS-derived foliage cover decreases with increasing insolation. Foliage cover is well correlated with crown cover (R 2 =0.65), and since foliage cover is readily calculable for whole-of-landscape application, it will provide valuable and complementary information to NDVI. Between-plot heterogeneity increases with increasing wetness and decreasing insolation, indicating that more sampling is required in these locations to capture the full range of landscape-based variability. Pattern analysis in landscape ecology is one of the fundamental requirements of landscape ecology, and the methods described here offer statistically significant, quantifiable and repeatable means to realise that goal at a fine spatial grain.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ANOVA; LiDAR; Vegetation structure and pattern; insolation; remote sensing; topographic wetness; vegetation metrics

Document Type: Research Article

Affiliations: 1: Geography and Planning, University of New England, 2: Forest Sciences Centre, University of British Columbia,

Publication date: 2011-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more