Skip to main content

A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change Trajectories from Multi-temporal Satellite Imagery

Buy Article:

$55.00 plus tax (Refund Policy)

Abstract:

Temporal trajectories of land-cover change provide important information on landscape dynamics that are critical to our understanding of complex human–environment adaptive systems. The increasing availability of long time series of satellite images, especially the recent free release of multi-decadal Landsat satellite archive, presents a great opportunity to improve our ability to detect land-cover change over multiple dates and advance land change science. In this article, a spatial-temporal modeling approach is developed for reconstructing land-cover change trajectories from time series of satellite images. The change detection method represents an enhancement to the conventional post-classification comparison. The key innovation lies in the use of Markov random field theory to model spatial-temporal contextual information explicitly in the classification of time series images. When evaluated using a time series of seven Landsat images in a case study of southeast Ohio, the spatial-temporal modeling approach yielded significantly more accurate and consistent trajectories of land-cover change than conventional non-contextual approaches. The results from the case study demonstrate the effectiveness of the change detection method in reconstructing land-cover change trajectories and also highlight the utility of spatial-temporal contextual information in improving the accuracy and consistency of land-cover classifications across space and time.

Keywords: Landsat imagery; change detection; comparación post-clasificación; detección de cambios; imágenes Landsat; información contextual espacio-temporal; land-cover change trajectories; post-classification comparison; spatial-temporal contextual information; trayectorias de cambio de cobertura terrestre

Document Type: Research Article

DOI: https://doi.org/10.1080/00045608.2011.596357

Affiliations: 1: Department of Geography and Department of Statistics,The Ohio State University, 2: Department of Geography,The Ohio State University,

Publication date: 2012-11-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more