If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Characterization and Mapping of Patterned Ground in the Saginaw Lowlands, Michigan: Possible Evidence for Late-Wisconsin Permafrost

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

We identified, mapped, and characterized a widespread area (>1,020 km2) of patterned ground in the Saginaw Lowlands of Michigan, a wet, flat plain composed of waterlain tills, lacustrine deposits, or both. The polygonal patterned ground is interpreted as a possible relict permafrost feature, formed in the Late Wisconsin when this area was proximal to the Laurentide ice sheet. Cold-air drainage off the ice sheet might have pooled in the Saginaw Lowlands, which sloped toward the ice margin, possibly creating widespread but short-lived permafrost on this glacial lake plain. The majority of the polygons occur between the Glacial Lake Warren strandline (∼14.8 cal. ka) and the shoreline of Glacial Lake Elkton (∼14.3 cal. ka), providing a relative age bracket for the patterned ground. Most of the polygons formed in dense, wet, silt loam soils on flat-lying sites and take the form of reticulate nets with polygon long axes of 150 to 160 m and short axes of 60 to 90 m. Interpolygon swales, often shown as dark curvilinears on aerial photographs, are typically slightly lower than are the polygon centers they bound. Some portions of these interpolygon swales are infilled with gravel-free, sandy loam sediments. The subtle morphology and sedimentological characteristics of the patterned ground in the Saginaw Lowlands suggest that thermokarst erosion, rather than ice-wedge replacement, was the dominant geomorphic process associated with the degradation of the Late-Wisconsin permafrost in the study area and, therefore, was primarily responsible for the soil patterns seen there today.

Keywords: Pleistocene permafrost; electrical resistivity; glacial lake plain; patterned ground; soils

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/00045600902931629

Affiliations: 1: Department of Geography, Michigan State University, 2: Department of Geography, University of Wisconsin-Madison, 3: Department of Geological Sciences, Michigan State University, 4: Department of Geography and Geology, University of Copenhagen,

Publication date: July 1, 2009

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more