Skip to main content

Tests of the ratio rule in categorization

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


Many theories of learning and memory (e.g., connectionist, associative, rational, exemplar based) produce psychological magnitude terms as output (i.e., numbers representing the momentary level of some subjective property). Many theories assume that these numbers may be translated into choice probabilities via the ratio rule, also known as the choice axiom (Luce, 1959) or the constant-ratio rule (Clarke, 1957). We present two categorization experiments employing artificial, visual, prototype-structured stimuli constructed from 12 symbols positioned on a grid. The ratio rule is shown to be incorrect for these experiments, given the assumption that the magnitude terms for each category are univariate functions of the number of category-appropriate symbols contained in the presented stimulus. A connectionist winner-take-all model of categorical decision (Wills & McLaren, 1997) is shown to account for our data given the same assumption. The central feature underlying the success of this model is the assumption that categorical decisions are based on a Thurstonian choice process (Thurstone, 1927, Case V) whose noise distribution is not double exponential in form.

Document Type: Research Article


Affiliations: Cambridge University, Cambridge, U.K.

Publication date: November 1, 2000


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more