Using species-environmental amplitudes to predict pH values from vegetation

$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Question: Species optima or indicator values are frequently used to predict environmental variables from species composition. The present study focuses on the question whether predictions can be improved by using species environmental amplitudes instead of single values representing species optima.

Location: Semi-natural, deciduous hardwood forests of north-western Germany.

Methods: Based on a data set of 558 relevés, species responses (presence/absence) to pH were modelled with Huisman-Olff-Fresco (HOF) regression models. Species amplitudes were derived from response curves using three different methods. To predict the pH from vegetation, a maximum amplitude overlap method was applied. For comparison, predictions resulting from several established methods, i.e. maximum likelihood/present and absent species, maximum likelihood/present species only, mean weighted averages and mean Ellenberg indicator values were calculated. The predictive success (squared Pearson's r and root mean square error of prediction) was evaluated using an independent data set of 151 relevés.

Results: Predictions based upon amplitudes defined by maximum Cohen's probability threshold yield the best results of all amplitude definitions (R2 = 0.75, RMSEP = 0.52). Provided there is an even distribution of the environmental variable, amplitudes defined by predicted probability exceeding prevalence are also suitable (R2 = 0.76, RMSEP = 0.55). The prediction success is comparable to maximum likelihood (present species only) and – after rescaling – to mean weighted averages. Predicted values show a good linearity to observed pH values as opposed to a curvilinear relationship of mean Ellenberg indicator values. Transformation or rescaling of the predicted values is not required.

Conclusions: Species amplitudes given by a minimum and maximum boundary for each species can be used to efficiently predict environmental variables from species composition. The predictive success is superior to mean Ellenberg indicator values and comparable to mean indicator values based on species weighted averages.

Keywords: CALIBRATION; HOF MODEL; REALISED NICHE; RESPONSE CURVE; WOODLAND

Document Type: Research Article

DOI: http://dx.doi.org/10.3170/2008-8-18394

Publication date: August 1, 2008

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more