Skip to main content

Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt

Buy Article:

$28.00 plus tax (Refund Policy)

Abstract:

Background: Disturbances by avalanches have created unique habitats for animals and plants in subalpine ecosystems worldwide, but at the same time avalanches can pose a major threat to humans. Thus, avalanches are suppressed by means of avalanche barriers to protect settlements and infrastructures in populated areas of the European Alps. As a consequence, the disturbance regime in avalanche tracks has fundamentally changed.

Methods: In the present study we address ecological consequences of avalanche suppression on plant diversity. We analysed plant diversity and species composition in recent and old avalanche tracks with and without avalanche suppression and in undisturbed adjacent forests at high and low elevations.

Results: The number of species was higher in both active and inactive avalanche tracks as compared to undisturbed subalpine forest. The species composition indicated a wider range of ecological niches in active than in inactive avalanche tracks. The vegetation from active tracks showed lower indicator values for temperature and nitrogen availability. The proportion of alpine species was lower in formerly active tracks.

Conclusions: The conditions that exist in active avalanche tracks increase plant diversity in relation to undisturbed forest. In the few decades following avalanche suppression, species composition changes in tracks from which avalanches have been excluded. Continued suppression of avalanche disturbance may lead to a decline in plant and habitat diversity. Avalanche disturbance can exert an important influence on the biodiversity of subalpine forests and provide important habitats. Anthropogenic changes in the natural regime of avalanche disturbance are likely to contribute significantly to future landscape changes in subalpine forests.

Keywords: ALPS; AVALANCHE; DIVERSITY; INDICATOR VALUE; SNOW; SWITZERLAND

Document Type: Research Article

Publication date: 2007-10-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more