Skip to main content

Effects of microelectrical current on migration of nasal fibroblasts

Buy Article:

$44.50 plus tax (Refund Policy)

Abstract:

Background:

Migration of fibroblasts is critical in wound healing. The question of how wounded electric fields guide migration of nasal fibroblasts remains to be elucidated. This study was designed to determine morphology, directedness, and migration rate of nasal fibroblasts during microcurrent application, which is simulated by an endogenous electric field at the vicinity of the wound.

Methods:

Nasal fibroblasts were exposed to a microelectric field at 50, 100, and 250 mV/mm for 3 hours at 37°C. In this experiment, the field polarity was reversed for an additional 3 hours. During in vitro testing, the cells were incubated in a newly developed miniature, microcurrent generating chamber system, with 5% CO2, at 37°C; the media was circulated by a pump system. A wound was created by scratching a cell-free area (∼150 μm wide) into a confluent monolayer. The average migration speed was calculated as the distance traveled by the cell divided by time.

Results:

A microelectric field of 100 mV/mm or more induced significant cell migration in the direction of the cathode. Trajectory speeds at 50, 100, and 250 mV/mm were 9.8 ± 0.3, 11.8 ± 0.3, and 13.5 ± 0.9 μm/mm, respectively. A significant difference was observed between migratory rate of controls and that of 50 mV/mm (p < 0.05).

Conclusion:

Microelectric fields appear to have a crucial role in control of nasal fibroblast activity in the process of wound healing.

Keywords: Cell migration; direction; field polarity; microcurrent fields; miniature microcurrent generating chamber system; nasal fibroblasts; wound healing

Document Type: Research Article

DOI: https://doi.org/10.2500/ajra.2011.25.3633

Affiliations: Department of Biomedical Engineering, Brain Korea 21 Project for Biomedical Science, College of Medicine, Korea University, Seoul, Korea

Publication date: 2011-05-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more