Skip to main content

Hypersensitivity to Common Tree Pollens in New York City Patients

Buy Article:

$39.50 plus tax (Refund Policy)

Testing for tree pollen hypersensitivity typically requires the use of several tree pollens. Identifying patterns of cross-sensitivity to tree pollens could reduce the number of trees used for testing. The goal of this study was to relate reported tree pollen levels to hypersensitivity patterns. Three hundred seventy-one allergy patients were tested serologically for hypersensitivity toward prevalent tree pollens in the surrounding New York area over the years 1993-2000. Specific tree pollens that were examined included oak (Quercus alba), birch (Betula verrucosa), beech (Fagus grandifolia), poplar (Populus deltoides), maple (Acer negundo), ash (Fraxinus americana), hickory (Carya pecan), and elm (Ulmus americana). Statistical analysis of the levels of hypersensitivity was performed to identify correlations and grouping factors. Pollen levels, obtained from published annual pollen and spore reports, were characterized and related to the prevalence of hypersensitivity for the various trees. The highest prevalence of hypersensitivity (score ≥ class 1) was for oak (34.3%), birch (32.9%), and maple (32.8%) tree pollens. Lower prevalences were observed for beech (29.6%), hickory (27.1%), ash (26%), elm (24.6%), and poplar (20.6%) trees. Significant correlations were observed between oak, birch, and beech radioallergosorbent test scores. Factor analysis identified two independent pollen groups with oak, birch, and beech consisting of one group and the other five tree pollens constituting the other group. Peak pollen counts clearly were highest for oak, birch, and maple trees. The peak pollen counts corresponded roughly to seropositivity prevalences for the tree pollens. When elm, poplar, and beech test scores were not used to identify patients who were allergic to tree pollens, only 1 of 106 patients with any positive tree radioallergosorbent test score was missed. It is concluded that in the New York City area, hypersensitivity to tree pollens most often is manifested with allergy to oak, birch, and maple tree pollens. Identifying beech, poplar, and elm hypersensitivity adds little toward identifying patients who are allergic to tree pollens. This may relate in part to cross-reactive epitopes. These data suggest that these three trees can be eliminated from testing with only a < 1% loss of sensitivity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Regular Paper

Publication date: 2002-07-01

More about this publication?
  • Allergy and Asthma Proceedings is a peer reviewed publication dedicated to distributing timely scientific research regarding advancements in the knowledge and practice of allergy, asthma and immunology. Its primary readership consists of allergists and pulmonologists.

    The goal of the Proceedings is to publish articles with a predominantly clinical focus which directly impact quality of care for patients with allergic disease and asthma.

    Featured topics include asthma, rhinitis, sinusitis, food allergies, allergic skin diseases, diagnostic techniques, allergens, and treatment modalities. Published material includes peer-reviewed original research, clinical trials and review articles.

    Articles marked "F" offer free full text for personal noncommercial use only.

    The journal is indexed in Thomson Reuters Web of Science and Science Citation Index Expanded, plus the National Library of Medicine's PubMed service.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Information for Advertisers
  • Reprint Requests
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more