If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Expression of genes involved in key metabolic processes during winter flounder (Pseudopleuronectes americanus) metamorphosis

$50.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The aim of this study was to better understand the molecular events governing ontogeny in winter flounder (Pseudopleuronectes americanus (Walbaum, 1792)). The expression of seven genes involved in key metabolic processes during metamorphosis were measured at settlement (S0), at 15 (S15), and 30 (S30) days after settlement and compared with those in pelagic larvae prior to settlement (PL). Two critical stages were identified: (1) larval transit from the pelagic to the benthic habitat (from PL to S0) and (2) metamorphosis maturation, when the larvae stay settled without growth (from S0 to S30). Growth hormone (gh) gene expression significantly increased at S0. At S30, an increase in cytochrome oxidase (cox) gene expression occurred with a second surge of gh gene expression, suggesting that enhanced aerobic capacity was supporting growth before the temperature decrease in the fall. Expression patterns of pyruvate kinase (pk), glucose-6-phosphate dehydrogenase (g6pd), and bile salt activated lipase (bal) genes indicated that energy synthesis may be mainly supplied through glycolysis in PL, through the pentose–phosphate pathway at settlement, and through lipid metabolism at S30. The expression of the heat-shock protein 70 (hsp70), superoxide dismutase (sod), cox, and peroxiredoxin-6 (prx6) genes revealed that oxidative stress and the consequent development of antioxidative protection were limited during the PL stage, reinforced at settlement, and very high at S30, certainly owing to the higher growth rate observed at this period.

Keywords: Pseudopleuronectes americanus; antioxidant enzymes; energy metabolism; enzymes antioxydantes; growth hormone; hormone de croissance; metamorphosis; métabolisme énergétique; métamorphose; plie rouge; winter flounder

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/cjz-2012-0240

Affiliations: 1: Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada. 2: Institut Maurice-Lamontagne, Pêches et Océans Canada, 850 route de la mer, Mont-Joli, QC G5H 3Z4, Canada.

Publication date: January 1, 2013

More about this publication?
  • Published since 1929, this monthly journal reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more