Skip to main content

Genetic structure of the arboreal squirrels (Glaucomys sabrinus and Tamiasciurus hudsonicus) in the North American Black Hills

Buy Article:

$50.00 plus tax (Refund Policy)


We selected two isolated mammalian populations, the Black Hills northern flying squirrel (Glaucomys sabrinus (Shaw, 1801)) and red squirrel (Tamiasciurus hudsonicus (Erxleben, 1777)), to elucidate their genetic structure. We trapped both squirrels from 2005 to 2007, in three regions of the Black Hills, differing in geology and vegetation, to collect ear samples for genetic analyses. Microsatellite loci (northern flying (9) and red squirrel (13)) were used to examine genetic structure. Data analyses estimated genetic variability, substructure, and gene flow. Northern flying and red squirrel populations have allelic diversity and observed heterozygosity similar to other isolated populations. Each species shows weak substructure from STRUCTURE and GENELAND analyses, suggesting squirrel movements may be inhibited by topography or unsuitable habitat. Recent gene flow estimates from BAYESASS indicate that both species experience some within population gene flow and red squirrels may be more structured than northern flying squirrels because of lower migration rates. Concordant patterns of genetic structure in northern flying and red squirrels indicate that other species’ movements in the Black Hills may be affected by topography and habitat. Because their habitat is isolated in the Black Hills, management practices and conservation measures are recommended to promote viability and survival of each species.

Keywords: Glaucomys sabrinus; Tamiasciurus hudsonicus; genetic structure; grand polatouche; northern flying squirrel; red squirrels; structure génétique; écureuil roux

Document Type: Research Article


Publication date: 2012-09-17

More about this publication?
  • Published since 1929, this monthly journal reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more