Fast and slow life histories of carnivores

$50.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The fast–slow continuum hypothesis explains life-history traits as reflecting the causal influence of mortality patterns in interaction with trade-offs among traits, particularly more reproductive effort at a cost of shorter lives. Variation among species of different body sizes produce more or less rapid life cycles (respectively, from small to large species), but the fast–slow continuum remains for birds and mammals when body-size effects are statistically removed. We tested for a fast–slow continuum in mammalian carnivores. We found the above trade-offs initially supported in a sample of 85 species. Body size, however, was strongly associated with phylogeny (ρ = 0.79), and thus we used regression techniques and independent contrasts to make statistical adjustments for both. After adjustments, the life-history trade-offs were not apparent, and few associations of life-history traits were significant. Litter size was negatively associated with age at maturity, but slightly positively associated with offspring mass. Litter size and mass were negatively associated with the length of the developmental period. Gestation length showed weak but significant negative associations with age at maturity and longevity. We conclude that carnivores, despite their wide range of body sizes and variable life histories, at best poorly exhibited a fast–slow continuum.

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/z11-033

Affiliations: Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA.

Publication date: August 30, 2011

More about this publication?
  • Published since 1929, this monthly journal reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more