Skip to main content

Contribution of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

Stable isotopes of carbon, nitrogen, and sulfur in organisms can trace nutrient sources and determine trophic interactions. However, time is required for an organism to reflect the isotopic composition of its diet. The rate at which an organism incorporates the isotopic signature of its food has a growth (k) component and a metabolic tissue replacement (m) component. This study shows that metabolic tissue replacement accounts for between 68% and 80% of the observed changes in isotopic signature in zebra danio (Danio rerio (Hamilton, 1822)) muscle following a dietary shift, with the remainder owing to growth of new tissue. The half-lives of carbon, nitrogen, and sulfur were ~53, ~147 and ~58days, respectively. This indicates that a significant period of isotopic disequilibria exists before zebra danio resemble dietary isotopic composition. These results show that catabolic replacement of tissue, as well as growth, must be taken into account when predicting the rate of isotope incorporation in warm-water fish. When using isotopic ratios to decipher food webs and trophic interactions, researchers should be aware that the often held assumption of isotopic equilibrium between diet and consumer may be violated.

Les isotopes stables de carbone, d’azote et de soufre dans les organismes peuvent permettre de retracer les sources d’alimentation et de déterminer les interactions trophiques. Cependant, il faut du temps pour qu’un organisme reflète la composition isotopique de son régime alimentaire. Le taux auquel un organisme incorpore la signature isotopique de sa nourriture possède deux composantes, une de croissance (k) et une de remplacement métabolique des tissus (m). Notre étude montre que le remplacement métabolique des tissus explique entre 68% et 80% des changements observés dans la signature isotopique du muscle de zèbres (Danio rerio (Hamilton, 1822)) après un changement de régime alimentaire, le reste étant dû à la croissance de nouveaux tissus. Il y a donc une période significative de déséquilibre isotopique avant que le zèbre ne corresponde à la composition isotopique de sa nourriture. Les demi-vies de carbone, d’azote et de soufre étaient ~53, ~147 et ~58 jours, respectivement. Ces résultats montrent que le remplacement catabolique des tissus, de même que le croissance, doivent être pris en compte afin de prédire le taux d’incorporation des isotopes chez un poisson d’eau chaude. Les chercheurs qui utilisent les rapports isotopiques pour décoder les réseaux alimentaires et les interactions trophiques doivent être conscients que la présupposition courante qui veut qu’il y ait un équilibre isotopique entre un consommateur et son régime alimentaire ne s’applique pas toujours.

Document Type: Research Article

Publication date: 2006-10-01

More about this publication?
  • Published since 1929, this monthly journal reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more