Skip to main content

Regeneration neurohormones and growth factors in echinoderms

Buy Article:

$50.00 plus tax (Refund Policy)

There has been much recent interest in the presence and biological functions of growth regulators in invertebrates. In spite of the different distribution patterns of these molecules in different phyla (from molluscs, insects, and annelids to echinoderms and tunicates), they seem always to be extensively involved in developmental processes, both embryonic and regenerative. Echinoderms are well known for their striking regenerative potential and many can completely regenerate arms that, for example, are lost following self-induced or traumatic amputation. Thus, they provide a valuable experimental model for the study of regenerative processes from the macroscopic to the molecular level. In crinoids as well as probably all ophiuroids, regeneration is rapid and occurs by means of a mechanism that involves blastema formation, known as epimorphosis, where the new tissues arise from undifferentiated cells. In asteroids, morphallaxis is the mechanism employed, replacement cells being derived from existing tissues following differentiation and (or) transdifferentiation. This paper focuses on the possible contribution of neurohormones and growth factors during both repair and regenerative processes. Three different classes of regulatory molecules are proposed as plausible candidates for growth-promoting factors in regeneration: neurotransmitters (monoamines), neuropeptides (substance P, SALMFamides 1 and 2), and growth-factor-like molecules (TGF- (transforming growth factor ), NGF (nerve growth factor), RGF-2 (basic fibroblast growth factor)).

La présence et le fonctionnement biologique des régulateurs de croissance chez les invertébrés suscitent actuellement un grand intérêt. En dépit des patterns différents de répartition de ces molécules parmi les phylums (des mollusques, insectes et annélides aux échinodermes et aux tuniciers), celles-ci semblent jouer un rôle important dans les processus de développement, aussi bien au cours de l'embryogenèse que de la régénération. La capacité de régénération remarquable des échinodermes est un phénomène connu. Les échinodermes peuvent se refaire des membres entiers perdus, par exemple, par autotomie ou par amputation traumatique. Les échinodermes constituent ainsi un modèle expérimental précieux pour l'étude des processus de régénération, tant à l'échelle macroscopique qu'à l'échelle moléculaire. Chez les crinoïdes, et probablement aussi chez tous les ophiuroïdes, la régénération est rapide et se fait grâce à un mécanisme d'épimorphose qui implique la formation d'un blastème et au cours duquel les nouveaux tissus naissent de cellules non différenciées. Chez les astéroïdes, le mécanisme de régénération est la morphallaxie dans laquelle les cellules de remplacement se forment à partir de tissus existants après différenciation et (ou) transdifférenciation. Nous voulons souligner ici la contribution possible des neurohormones et des facteurs de croissance au cours des processus de réparation et de régénération. Trois classes de molécules régulatrices sont des candidats plausibles comme facteurs de croissance au cours de la régénération : les neurotransmetteurs (monoamines), les neuropeptides (substance P, SALMFamides 1 et 2) et les molécules semblables aux facteurs de croissance (TGF- (transforming growth factor ), NGF (nerve growth factor), RGF-2 (basic fibroblast growth factor)).[Traduit par la Rédaction]
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2001-07-01

More about this publication?
  • Published since 1929, this monthly journal reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more