If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Modeling wind and altitude effects in the 200 m sprint

$50.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A quasi-realistic mathematical model of 100 m sprint performances is modified to simulate the 200 m race, a portion of which is run around a curve. The calculated effects of wind are complex functions of the wind direction and the lane in which the athlete is running. It is shown that wind and altitude-assisted marks for the 200 m are in some cases significantly higher than the corresponding adjustments for the 100 m sprint under similar conditions. The estimated advantage of a 2 m s–1 tail wind is between 0.09–0.14 s, with the greater advantage going to the runner in the outside lane. At higher altitudes (>2000 m), these corrections can rise to over 0.3 s. Crosswinds can further enhance the performance by over 0.5 s due to decreased drag forces around the curve. A consequence of these results suggests that record ratification procedures for such performances be reconsidered. The model is also used to study Michael Johnson's world record race of 19.32 s from the 1996 Olympic Games in Atlanta, Georgia. PACS No.: 01.80.L

Nous utilisons un modèle mathématique semi-réaliste des performances d'une course de sprint sur 100 m afin d'étudier les performances d'une course de 200 m, une portion de laquelle suit une courbe. Les corrections calculées pour le vent sont des fonctions compliquées de la direction du vent et du couloir dans lequel l'athlète court. Nous trouvons que l'avantage dû au vent et à l'altitude pour le 200 m est dans certains cas significativement plus important que pour le sprint de 100 m dans les mêmes conditions. L'avantage estimé sous un vent arrière de 2 m s–1 est entre 0,09 et 0,14 s, la correction maximale allant au couloir extérieur. À plus haute altitude (>2000 m), ces corrections peuvent atteindre 0,3 s. Le vent de côté peut améliorer encore plus la performance par 0,5 s, à cause de la diminution de la force de résistance dans la courbe. Une conséquence de ces résultats suggère que les procédures de ratification de ces performances doit être revue. Nous utilisons aussi ce modèle pour étudier le record du monde de 19,32 s de Michael Johnson lors des Jeux Olympiques d'Atlanta en 1996. [Traduit par la Rédaction]

Document Type: Research Article

Publication date: July 1, 2003

More about this publication?
  • Published since 1929, this monthly journal reports significant advances in research in physics, including atomic and molecular physics, condensed matter, elementary particles and nuclear physics, gases, fluid dynamics and plasmas, electromagnetism and optics, mathematical physics, and interdisciplinary, classical, and applied physics. It publishes research articles, rapid communications, and review articles contributed by recognized experts in Canada and abroad. It also publishes special issues dedicated to current research in a particular area of physics.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more