Skip to main content

Isolation of transcripts overexpressed in the human pathogen Trichophyton rubrum grown in lipid as carbon source

Buy Article:

$50.00 plus tax (Refund Policy)


Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts overexpressed in T. rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-β-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.

Keywords: Trichophyton rubrum; dermatophyte; hybridation soustractive de suppression; lipid; lipide; suppression subtractive hybridization; triacylglycerol; triacylglycérol

Document Type: Research Article


Affiliations: 1: Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil. 2: Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil.

Publication date: April 8, 2011

More about this publication?
  • Published since 1954, this monthly journal contains new research in the field of microbiology including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more