Skip to main content

Comparison of transformation protocols in Streptococcus gordonii and evaluation of native promoter strength using a multiple-copy plasmid

Buy Article:

$50.00 plus tax (Refund Policy)


An active area of research in the development of Streptococcus gordonii for use as a bacterial commensal vector involves the identification and utilization of strong promoters for high-level expression of heterologous products. Escherichia coli plasmid vectors containing different streptococcal promoters often fail to become established in E. coli for unknown reasons. Therefore, it is desirable at times to transform S. gordonii, which is naturally competent, with small quantities of nascently ligated DNA without using E. coli first to amplify or screen the product. By comparing the efficiency of two methods used to induce competence in S. gordonii, it was shown that the use of a synthetic competence stimulating peptide substantially enhanced plasmid uptake by S. gordonii. We amplified the amylase-binding protein (abpA) promoter from the S. gordonii genome and, using a synthetic peptide to induce competence, directly introduced plasmid DNA containing this promoter into S. gordonii as an unamplified product of ligation. This plasmid facilitated abundant secretion of a heterologous product by S. gordonii. By assessing the levels of heterologous product secreted by two plasmid constructs, it was possible to evaluate the relative strength of two native promoters.

Keywords: AbpA; Gram positif; Gram positive; Streptococcus gordonii; amylase binding protein; antigen; antigène; competence; compétence; expression; peptide; promoter; promoteur; protéine liant l’amylase; secretion; sécrétion; transformation

Document Type: Research Article


Publication date: 2007-03-01

More about this publication?
  • Published since 1954, this monthly journal contains new research in the field of microbiology including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more