Skip to main content

Comparison of black spruce (Picea mariana) radial growth reduction in different soil moisture regimes during a spruce budworm (Choristoneura fumiferana) outbreak

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

The objective of this study was to determine if the stand‐level soil moisture regime had a significant effect on the reduction in black spruce (Picea mariana (Mill.) B.S.P.) radial growth during the most recent spruce budworm (Choristoneura fumiferana Clem.) outbreak in the boreal forest region of northeastern Ontario. We collected a stratified random sample of co-dominant black spruce trees from three moisture regimes and compared the reduction of radial growth during a spruce budworm outbreak between dry, moist, and wet stands. We focused on the most recent outbreak from 1975–1987, which we dated by dendrochronological analysis of black spruce increment cores from the Romeo Malette Forest near Timmins, Ontario. Samples collected from dry and moist sites showed significantly greater maximum radial growth reduction than those from wet sites. Mean growth reduction over the entire outbreak was not significantly different among moisture regimes but followed the same trend. We found no evidence of spatial autocorrelation in the growth reduction response, suggesting that the moisture effect was not confounded by location.

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/x2012-080

Publication date: July 19, 2012

More about this publication?
  • Published since 1971, this monthly journal features articles, reviews, notes and commentaries on all aspects of forest science, including biometrics and mensuration, conservation, disturbance, ecology, economics, entomology, fire, genetics, management, operations, pathology, physiology, policy, remote sensing, social science, soil, silviculture, wildlife and wood science, contributed by internationally respected scientists. It also publishes special issues dedicated to a topic of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
nrc/cjfr/2012/00000042/00000007/art00022
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more