Skip to main content

Measurement variability error for estimates of volume change

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for various components of volume change. In comparison with sampling error, the error due to measurement variation was relatively small. When biases in measurements had contradictory effects on the calculation of individual tree volume, there was little additional error, however, systematic biases produced substantial error increases. The proportion of measurement variation error attributable to diameter at breast height and tree species classification was small relative to that attributable to bole (merchantable) height and percent cull attributes, which composed the preponderance of uncertainty due to measurement variation. The greatest impacts were associated with the accretion component, which was subject to measurement variation and bias at both the initial and subsequent measurements.

Des données d’assurance de qualité ont été utilisées pour développer les distributions d’erreurs de mesure des variables servant à prédire le volume des arbres. Des valeurs d’erreur extraites aléatoirement de ces distributions ont été appliquées à 19381 arbres faisant l’objet de mesurages répétés dans l’état du Maine. L’erreur additionnelle causée par l’effet combiné de l’erreur et du biais des mesures a été estimée en simulant les diverses composantes de la variation du volume. Par rapport à l’erreur d’échantillonnage, l’erreur de mesure est relativement faible. L’erreur additionnelle est faible lorsque le biais des mesures a des effets opposés sur le calcul du volume d’un arbre. Cependant, l’erreur augmente de façon importante lorsque le biais est systématique. La proportion de la variation de l’erreur de mesure attribuée à la classification du diamètre à hauteur de poitrine et de l’espèce d’arbre est faible relativement aux mesures de la hauteur marchande de la tige et du pourcentage de défauts qui constituent la principale source d’incertitude à cause des erreurs de mesure. Les erreurs les plus grandes sont associées à la composante d’accroissement qui est sujette à l’effet combiné de l’erreur et du biais des mesures lors du mesurage initial et des mesurages subséquents.

Document Type: Research Article

Publication date: 2007-11-01

More about this publication?
  • Published since 1971, this monthly journal features articles, reviews, notes and commentaries on all aspects of forest science, including biometrics and mensuration, conservation, disturbance, ecology, economics, entomology, fire, genetics, management, operations, pathology, physiology, policy, remote sensing, social science, soil, silviculture, wildlife and wood science, contributed by internationally respected scientists. It also publishes special issues dedicated to a topic of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more