Skip to main content

Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

Light detection and ranging (lidar) is becoming an increasingly popular technology among scientists for the development of predictive models of forest biophysical variables. However, before this technology can be adopted with confidence for long-term monitoring applications in Canada, robust models must be developed that can be applied and validated over large and complex forested areas. This will require "scaling-up" from current models developed from high-density lidar data to low-density data collected at higher altitudes. This paper investigates the effect of lowering the average point spacing of discrete lidar returns on models of forest biophysical variables. Validation of results revealed that high-density models are well correlated with mean dominant height, basal area, crown closure, and average aboveground biomass (R2 = 0.84, 0.89, 0.60, and 0.91, respectively). Low-density models could not accurately predict crown closure (R2 = 0.36). However, they did provide slightly improved estimates for mean dominant height, basal area, and average aboveground biomass (R2 = 0.90, 0.91, and 0.92, respectively). Maps were generated and validated for the entire study area from the low-density models. The ability of low-density models to accurately map key biophysical variables is a positive indicator for the utility of lidar data for monitoring large forested areas.

Le lidar est en voie de devenir une technique de plus en plus populaire parmi les chercheurs pour le développement de modèles de prédiction des variables biophysiques de la forêt. Cependant, avant que cette technologie puisse être adoptée avec confiance pour le suivi à long terme au Canada, des modèles robustes pouvant être appliqués et validés pour des superficies de forêt vastes et complexes doivent être développés. Cela va exiger de passer des modèles courants développés à partir d'une forte densité de données lidar à une plus faible densité de données collectées à plus haute altitude. Cet article se penche sur l'effet de la diminution de l'espacement ponctuel moyen des échos individuels du lidar sur les modèles de variables biophysiques de la forêt. La validation des résultats a montré que les modèles à forte densité sont bien corrélés avec la hauteur dominante moyenne, la surface terrière, la fermeture du couvert et la biomasse aérienne moyenne (R2 = 0,84, 0,89, 0,60 et 0,91 respectivement). Les modèles à faible densité ne pouvaient pas correctement (R2 = 0,36) prédire la fermeture du couvert. Cependant, ils ont fourni des estimations légèrement meilleures pour la hauteur dominante moyenne, la surface terrière et la biomasse aérienne moyenne (R2 = 0,90, 0,91 et 0,92 respectivement). Des cartes ont été générées et validées pour toute la zone d'étude à partir de modèles à faible densité. La capacité des modèles à faible densité à cartographier correctement les variables biophysiques importantes est une indication positive de l'utilité des données lidar pour le suivi de vastes zones de forêt.[Traduit par la Rédaction]

Document Type: Research Article

Publication date: January 1, 2006

More about this publication?
  • Published since 1971, this monthly journal features articles, reviews, notes and commentaries on all aspects of forest science, including biometrics and mensuration, conservation, disturbance, ecology, economics, entomology, fire, genetics, management, operations, pathology, physiology, policy, remote sensing, social science, soil, silviculture, wildlife and wood science, contributed by internationally respected scientists. It also publishes special issues dedicated to a topic of current interest.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
nrc/cjfr/2006/00000036/00000001/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more