Skip to main content

Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information

Buy Article:

$50.00 plus tax (Refund Policy)


Surplus production represents the processes that affect sustainable fishery harvest and is central to the ecology and management of marine fishes. Taxonomy and life history influence the ratio of spawning biomass at maximum sustainable yield to average unfished spawning biomass (SBMSY/SB0), and estimating this ratio for individual stocks is notoriously difficult. We use a database of published landings data and stock assessment biomass estimates and determine that process errors predominate in this data set by fitting a state–space model to data from each stock individually. We then fit multispecies process-error models while treating SBMSY/SB0 as a random effect that varies by taxonomic order and maximum length. The estimated SBMSY/SB0 = 0.40 for all 147 stocks is intermediate between the values assumed by the Fox and the Schaefer models, although Clupeiformes and Perciformes have lower and Gadiformes and Scorpaeniformes have higher SBMSY/SB0 values. Model selection supports the hypothesis that large-bodied fishes for a given taxonomic order have relatively higher SBMSY/SB0. Results can be used to define reference points for data-poor fisheries or as input in emerging assessment methods.

Document Type: Research Article


Affiliations: 1: School of Aquatic & Fishery Sciences, Box 355020, University of Washington, Seattle, WA 98195-5020, USA. 2: Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA. 3: Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901-8525, USA.

Publication date: September 14, 2012

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more