Skip to main content

Algal community responses to shallow lake dystrophication

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

This research details changes in lake algal community structure that occurred during dystrophication. We conducted a paleolimnological investigation of Pungo Lake, a shallow, dystrophic system near the coast of North Carolina, USA. Multiple chemical and biological proxies were measured on a sediment core, including sedimentary photosynthetic pigments, lignin-phenols, nutrients, and δ13C. Data analysis identified three zones of algal community structure corresponding to three regimes of organic matter inputs. Predystrophic conditions represented a period of low organic inputs but substantial algal abundance (diatoms and other algal types). The period of dystrophication preceded European settlement (1850) and showed an increase in organic matter deposition, lignin, and a change in lignin type. Lignin-phenols and δ13C signatures of organic matter indicated that terrestrial organic matter inputs increased during this period, possibly as a result of wetland expansion. Dystrophication also corresponded to an increase in algal groups that favor low light environments (cyanobacteria and cryptophytes).

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/f2012-021

Affiliations: 1: Institute of Marine Sciences, Department of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA. 2: Department of Environmental Science, Policy and Geography, University of South Florida, Saint Petersburg, FL 33701, USA. 3: Department of Oceanography, Texas A&M University, College Station, TX 77843-3146, USA.

Publication date: August 20, 2012

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
nrc/cjfas/2012/00000069/00000008/art00019
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more