Skip to main content

Salt marsh connectivity and freshwater versus saltwater inflow: multiple methods including tidal gauges, water isotopes, and LIDAR elevation models

Buy Article:

$50.00 plus tax (Refund Policy)


The hydrologic connectivity between different components of a coastal marsh is a key wetland structural element and is essential in determining habitat value. Salt marshes are often thought of as being hydrologically connected via tidal creeks, though water bodies within a salt marsh may also be semipermanently disconnected. At a salt marsh in Matagorda, Texas, USA, there are many “isolated” ponds, located at varying elevations. Our objective was to quantify the hydrologic connectivity of spatially isolated ponds at this site. We sampled water for salinity and stable isotopes (δ2H, δ18O) to determine the relative contribution of tidal water and rainfall within each pond. We also quantified the water level at which each pond floods its banks and connects to other ponds, using a light detection and ranging (LIDAR)-based elevation model. We found that pond connectivity was driven by multiple factors, of which wind and rainfall were the most important. Salinity and isotopic values between any two sampled ponds were correlated with the water level elevation at which the ponds connected. We conclude that the connectivity of the network, and the similarity of water samples within it, profoundly changes when specific water level thresholds are exceeded by both fresh water and salt water.

Document Type: Research Article


Affiliations: 1: Department of Ecosystem Science & Management, Texas A&M University, College Station, TX 77845, USA. 2: Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA.

Publication date: 2012-08-01

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more