Skip to main content

Assessing the sensitivity and specificity of fish community indicators to management action

Buy Article:

$50.00 plus tax (Refund Policy)


We assessed ten trophodynamic indicators of ecosystem status for their sensitivity and specificity to fishing management using a size-resolved multispecies fish community model. The responses of indicators to fishing depended on effort and the size selectivity (sigmoid or Gaussian) of fishing mortality. The highest specificity against sigmoid (trawl-like) size selection was seen from inverse fishing pressure and the large fish indicator, but for Gaussian size selection, the large species indicator was most specific. Biomass, mean trophic level of the community and of the catch, and fishing in balance had the lowest specificity against both size selectivities. Length-based indicators weighted by biomass, rather than abundance, were more sensitive and specific to fishing pressure. Most indicators showed a greater response to sigmoid than Gaussian size selection. Indicators were generally more sensitive at low levels of effort because of nonlinear sensitivity in trophic cascades to fishing mortality. No single indicator emerged as superior in all respects, so given available data, multiple complementary indicators are recommended for community monitoring in the ecosystem approach to fisheries management.

Document Type: Research Article


Affiliations: 1: School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK. 2: Marine Institute, Rinville, Oranmore, Co. Galway, Ireland.

Publication date: 2012-06-30

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more