Skip to main content

Using model-based inference to evaluate global fisheries status from landings, location, and life history data

Buy Article:

$50.00 plus tax (Refund Policy)


Assessing fishery collapses worldwide is hindered by the lack of biomass data for most stocks, leading to the use of landings-based proxies or the assumption that existing stock assessments are globally representative. We argue that the use of sparse assessments to evaluate fishery status requires model-based inference because assessment availability varies spatially and temporally, and we derive a model that extrapolates from assessment results to available landings, life history, and location data. This model uses logistic regression to classify stocks into different prediction bins and estimates the probability of collapse in each using cross-validation. Results show that landings, life history, and location are informative to discriminate among different probabilities of collapse. We find little evidence that regions with fewer assessments have a greater proportion of collapsed stocks, while acknowledging weak inferential support regarding regions with one or fewer assessments. Our extrapolation suggests that 4.5%–6.5% of stocks defined by landings data are collapsed, but that this proportion is increasing. Finally, we propose a research agenda that combines stock assessment and landings databases while overcoming limitations in each.

Document Type: Research Article


Affiliations: 1: School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, WA 98195-5020, USA. 2: Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, NB, NJ 08901-8525, USA.

Publication date: 2012-04-08

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more