Skip to main content

Landscape heterogeneity influences carbon dioxide production in a young boreal reservoir

Buy Article:

$50.00 plus tax (Refund Policy)


Surface carbon dioxide (CO2) emissions exhibit a high degree of spatial heterogeneity in the young boreal Eastmain-1 hydroelectric reservoir, located in northern Quebec, Canada. Estimates of the individual components of net CO2 production within the reservoir (benthic respiration, water column respiration, and primary production) furthermore provide a link between the heterogeneity in surface CO2 emissions and the flooded landscapes below. Specifically, the preflood carbon stock and soil–sediment respiration rates of flooded landscapes were found to influence benthic CO2 production, the rate of decline of hypolimnetic dissolved organic carbon (DOC), and the estimated rate at which flooded landscapes release DOC, further influencing water column respiration rates. Estimates of the individual components of net CO2 production in Eastmain-1 are supported by a positive relationship (t test, r 2 = 0.64, P < 0.01) between measured surface CO2 emissions (mean ± SE = 1540 ± 145.4 mg C·m–2·day–1) and independently derived estimates of total net CO2 production (mean ± SE = 1230 ± 162.4 mg C·m–2·day–1). Our findings emphasize the utility of fundamental landscape characterization prior to construction in predicting reservoir greenhouse gas emissions.

Document Type: Research Article


Publication date: 2012-03-17

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more