Skip to main content

Biocomplexity in a demersal exploited fish, white hake (Urophycis tenuis): depth-related structure and inadequacy of current management approaches

Buy Article:

$50.00 plus tax (Refund Policy)


Understanding the factors generating patterns of genetic diversity is critical to implementing robust conservation and management strategies for exploited marine species. Yet, often too little is known about population structure to properly tailor management schemes. Here we report evidence of substantial population structure in white hake (Urophycis tenuis) in the Northwest Atlantic, perhaps among the highest levels of population structure exhibited by a highly exploited, widely dispersed, long-lived marine fish. We show that depth plays a role in this extensive and temporally stable structure, which does not conform to previously established fisheries management units. Three genetically distinguishable populations were identified, where all straddle several management divisions and two (Southern Gulf of St. Lawrence and Scotian Shelf) overlap in their range, coexisting within a single division. The most highly exploited population in the Southern Gulf of St. Lawrence was also the most isolated and likely the smallest (genetically effective). This work shows that conservation and management priorities must include population structure and stability in establishing effective species recovery strategies.

Document Type: Research Article


Affiliations: 1: Fisheries and Oceans Canada, Oceans and Science Branch, Marine Fish Section, Gulf Fisheries Centre, 343 Université Avenue, P.O. Box 5030, Moncton, NB E1C 9B6, Canada. 2: Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.

Publication date: March 17, 2012

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more