Skip to main content

Temperature variability in the nearshore benthic boundary layer of Lake Opeongo is due to wind-driven upwelling events

Buy Article:

$50.00 plus tax (Refund Policy)


A major source of temperature variation in nearshore and benthic regions of stratified lakes is due to wind-driven tilting of the thermocline. The maximum displacement of the thermocline depends upon the wind forcing, stratification, and basin morphometry; combined these three-dimensional physical parameters give the dimensionless lake number (LN ). We find that the deflection of the thermocline across the length of the basin (Δh*) is correlated to the temporally averaged LN as Δh*/2h 1 = 0.37LN –1, where h 1 is the depth of the thermocline. We report field observations from Lake Opeongo (Ontario, Canada) showing that during large vertical movements of the thermocline, there are unstable temperature gradients in the benthic layer, as measured by the occurrence of temperature inversions on our thermistor strings. High-frequency waves interacting with the benthic boundary are most likely causing the temperature inversions. Measurements at two shallow slopes of S = 1% and 4%, show that inversions only occur when LN  < 5, whereas for S = 8%, the inversions occur only when LN  < 2.

Document Type: Research Article


Publication date: February 20, 2012

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more