Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs

$50.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Hydroelectric reservoirs retain large volumes of water and have a global impact on sea level, elemental cycles, and biodiversity. Using data from a total of 90 historical and recent surveys in nine regulated and eight unregulated alpine and subalpine lakes, we show an additional large effect of reservoirs, i.e., that impoundment causes drastically decreased fish growth and thereby great negative consequences for inland fisheries in Scandinavia. Following a long period (40–65¬†years) after impoundment, the length and mass of Arctic charr (Salvelinus alpinus) of the single age class 4+ years was, on average, 35% and 72% lower, respectively, in impounded versus natural lakes in northern Scandinavia. The effect was stronger at higher altitudes and can be mitigated by addition of inorganic nutrients. We suggest that the decreased fish growth is a consequence of lowered ecosystem productivity, oligotrophication, caused by impoundment, resulting in erosion and loss of the littoral ecosystem as well as delayed flooding and leakage of nutrients from the riparian zone until after the growing season.

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/f2011-131

Affiliations: 1: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Sweden. 2: Department of Ecology and Genetics, Limnology, Uppsala University, Sweden. 3: Department of Ecology and Genetics, Erken Laboratory, Limnology, Uppsala University, Sweden.

Publication date: December 6, 2011

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more