Skip to main content

Maximum likelihood estimation in nonlinear structured fisheries models using survey and catch-at-age data

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

Age-structured population dynamics models play an important role in fisheries assessments. Such models have traditionally been estimated using crude likelihood approximations or more recently using Bayesian techniques. We contribute to this literature with three main messages. Firstly, we demonstrate how to estimate such models efficiently by simulated maximum likelihood using Laplace importance samplers for the likelihood function. Secondly, we demonstrate how simulated maximum likelihood estimates may be validated using different importance samplers known to approach the exact likelihood function in different regions of the parameter space. Thirdly, we show that our method works in practice by Monte Carlo simulations using parameter values as estimated from data on the Northeast Arctic cod (Gadus morhua) stock. The simulations suggest that we are able to recover the unknown true maximum likelihood estimates using moderate importance sample sizes and show that we are able to adequately recover the true parameter values.

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/f2011-085

Publication date: October 4, 2011

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
nrc/cjfas/2011/00000068/00000010/art00003
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more