A state–space multistage life cycle model to evaluate population impacts in the presence of density dependence: illustrated with application to delta smelt (Hyposmesus transpacificus)

$50.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Multiple factors acting on different life stages influence population dynamics and complicate the assessment and management of populations. To provide appropriate management advice, the data should be used to determine which factors are important and what life stages they impact. It is also important to consider density dependence because it can modify the impact of some factors. We develop a state–space multistage life cycle model that allows for density dependence and environmental factors to impact different life stages. Models are ranked using a two-covariates-at-a-time stepwise procedure based on AICc model averaging to reduce the possibility of excluding factors that are detectable in combination, but not alone. Impact analysis is used to evaluate the impact of factors on the population. The framework is illustrated by application to delta smelt (Hyposmesus transpacificus), a threatened species that is potentially impacted by multiple anthropogenic factors. Our results indicate that density dependence and a few key factors impact the delta smelt population. Temperature, prey, and predators dominated the factors supported by the data and operated on different life stages. The included factors explain the recent declines in delta smelt abundance and may provide insight into the cause of the pelagic species decline in the San Francisco Estuary.

Document Type: Research Article

DOI: http://dx.doi.org/10.1139/f2011-071

Affiliations: Inter-American Tropical Tuna Commission, 8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA.

Publication date: July 6, 2011

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more