Skip to main content

Coupling genetic and otolith trace element analyses to identify river-born fish with hatchery pedigrees in stocked Atlantic salmon (Salmo salar) populations

Buy Article:

$50.00 plus tax (Refund Policy)


This study combines otolith trace element and genetic analyses to explore the origin of individuals when hatchery-reared fish are released into wild populations. We sampled 90 juvenile Atlantic salmon (Salmo salar) in four rivers in Normandy (France) and in the hatchery stock. Individuals were analyzed at six microsatellite markers and their otolith elemental concentrations (14 elements) were measured using femto-second laser ablation inductively-coupled plasma mass spectrometry. Wild populations were genetically differentiated from the hatchery strain (F ST ≈ 0.06). Significant differences in elemental concentrations were found among otoliths of juveniles from the four rivers and the hatchery, allowing the identification of their geographic origin (83%–100% correct assignment). Coupling genetic and trace element analyses on the same individuals provided formal evidence that hatchery-born juveniles released into the wild can migrate to the sea and return as adults to breed on natural spawning grounds. Their progeny have pure hatchery pedigrees but have otoliths typical of river-born juveniles, meaning that they can be mistaken for hatchery-raised juveniles if only genetic data are considered. The presence of hybrids also confirmed that individuals with hatchery pedigrees can breed with wild conspecifics.

Document Type: Research Article


Affiliations: 1: CEMAGREF, UR EPBX, 33612 Cestas, France. 2: INRA, UMR 985 Ecology and Health of Ecosystems, 35042 Rennes, France. 3: Université de Pau et des Pays de l'Adour, IPREM/LCABIE UMR 5254, 64053 Pau, France.

Publication date: 2011-06-01

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more