Skip to main content

Trade-offs between monitoring objectives and monitoring effort when classifying regional conservation status of Pacific salmon (Oncorhynchus spp.) populations

Buy Article:

$50.00 plus tax (Refund Policy)


Conservation objectives aimed at maintaining the diversity of Pacific salmon (Oncorhynchus spp.) are often expressed as a desire to ensure that spawner abundance is spread out over a number of spawning sites. However, sampling is not usually possible at all sites or in all years. For such incomplete data sets, rotating panel sampling designs and hierarchical estimation models have been suggested as ways to improve monitoring performance. To evaluate the potential benefits of using these approaches to assess the conservation status of coho salmon (O. kisutch), we developed a simulation procedure that modelled spatial and temporal variation in salmon abundance at multiple sites within a region. Results show that both approaches were largely unsuccessful at reducing classification errors for conservation status. Furthermore, indicators describing distributions of abundance levels and temporal trends in abundance within a region were more sensitive to missing data than to observation error variance on annual abundance estimates. Thus, sampling effort might be better spent reducing the level of missing data within a regional data set, as opposed to obtaining more precise estimates for only a few site–year combinations. Our results also show that the best monitoring plans for regions depend on monitoring objectives as well as the relative magnitudes of spatial and temporal variability.

Document Type: Research Article


Publication date: May 10, 2011

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more