Skip to main content

Optimal number of sites in artificial pelagic multisite fisheries

Buy Article:

$50.00 plus tax (Refund Policy)


We present a mathematical model of artificial pelagic multisite fisheries. The model is a stock–effort dynamical model of a fishery subdivided into artificial fishing sites such as fish-aggregating devices (FADs) or artificial habitats (AHs). The objective of the work is to investigate the effects of the number of sites on the global activity of the fishery. We consider a linear chain of fishing sites in which fish are harvested by fishing vessels and a free stock that is unattached to the sites and not exploited. Fish movements between the sites and the free stock, as well as vessel displacements between the sites, are assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the total fishing effort. We show that there exists an optimal number of fishing sites that maximizes the total catch at equilibrium. We finally extend the model to the situation in which both fish attached to the sites and fish in the free stock are exploited.

Nous présentons un modèle mathématique d’une pêche pélagique artificielle à sites multiples. Le modèle est un modèle dynamique stock–effort subdivisé en sites artificiels de pêche, tels que des dispositifs de concentration des poissons (FAD) ou des habitats artificiels (AH). L’objectif de notre travail est de déterminer les effets du nombre de sites sur l’activité totale de la pêche. Nous examinons une chaîne linéaire de sites de pêche dans laquelle les poissons sont récoltés par des navires de pêche et un stock libre qui n’est pas relié aux sites et qui n’est pas exploité. Nous assumons que les déplacements des poissons entre les sites et le stock libre, de même que les déplacements des navires entre les sites, se produisent sur une échelle temporelle plus courte que la variation du stock et le changement de taille de la flotte. Ces deux échelles temporelles nous permettent de dériver une modèle réduit de contrôle de la dynamique du stock total de poissons et de l’effort total de la pêche. Nous démontrons qu’il existe un nombre optimal de sites de pêche qui maximise la capture totale à l’équilibre. Nous élargissons enfin le modèle à la situation dans laquelle il y a exploitation tant des poissons associés aux sites que des poissons du stock libre.

Document Type: Research Article

Publication date: February 1, 2010

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more