Skip to main content

The role of wind in determining the timing of the spring bloom in the Strait of Georgia

Buy Article:

$50.00 plus tax (Refund Policy)


A coupled biophysical model of the Strait of Georgia (SoG), British Columbia, Canada, has been developed and successfully predicts the timing of the spring phytoplankton bloom. The physical model is a one-dimensional vertical mixing model, using a K-profile parametrization of the boundary layer, forced with high frequency meteorological data. The biological model includes one phytoplankton class (microphytoplankton) and one nutrient source (nitrate). The spring bloom in the SoG occurs when phytoplankton receive enough light that their growth rates exceed their loss rates. The amount of light that the phytoplankton receive is a function of solar radiation and the depth of mixing. The model was used to determine what physical factors are controlling the phytoplankton losses and the light received by the phytoplankton. Wind was found to control the spring bloom arrival time, with strong winds increasing the mixing-layer depth and delaying the bloom. The amount of incoming solar irradiance, through amount of cloud cover, had a secondary effect. The freshwater input (primarily Fraser River discharge) had an insignificant effect on the timing. Increased freshwater flux increases the buoyancy flux and thus decreases the mixing-layer depth but also increases the strength of the estuarine circulation, increasing the advective loss.

Nous avons élaboré un modèle biophysique couplé du détroit de Géorgie (SoG), Colombie-Britannique, Canada, qui prédit avec succès le moment de la prolifération printanière du phytoplancton. Le modèle physique est un modèle de brassage vertical unidimensionnel, avec un paramétrage du profil K de la couche limite, forcé par des données météorologiques de haute fréquence. Le modèle biologique comprend une classe de phytoplancton (le microphytoplancton) et une source de nutriments (le nitrate). La prolifération printanière dans le SoG se produit lorsque le phytoplancton reçoit assez de lumière pour que son taux de croissance surpasse son taux de perte. La quantité de lumière reçue par le phytoplancton est fonction de la radiation solaire et de la profondeur du brassage. Le modèle a servi à déterminer quels facteurs physiques contrôlent les pertes du phytoplancton et la lumière reçue par le phytoplancton. Le vent contrôle le moment de l’arrivée de la prolifération printanière; cependant, les vents forts augmentent la profondeur de la couche de mélange et retardent la prolifération. La quantité d’éclairement solaire incident a un effet secondaire selon l’importance de la couverture nuageuse. L’apport d’eau douce (principalement le débit du Fraser) a un effet négligeable sur le calendrier de la prolifération. L’apport accru d’eau douce augmente le flux de flottabilité et diminue ainsi la profondeur de la couche de mélange, mais augmente aussi la force de la circulation dans l’estuaire, accroissant ainsi les pertes par advection.

Document Type: Research Article

Publication date: September 1, 2009

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more