If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

A spatial model to estimate gear efficiency and animal density from depletion experiments

$50.00 plus tax (Refund Policy)

Buy Article:


Depletion experiments are conducted to estimate efficiency of sampling gear and density of organisms. Traditional models for analyzing these experiments make restrictive assumptions that are often violated. We present a new spatial model, suitable for sessile benthic invertebrates, that does not depend on these restrictive assumptions. The new model (i) allows flexibility during the experiment in choosing the spatial location of successive samples, (ii) does not require organisms or successive samples to be randomized over the entire area of the experiment, and (iii) permits target organisms to be lost or added during the experiment. The model treats total catch per sample as a sum of catches from smaller cells with different, but known, sampling histories. A negative binomial model is used to describe the distribution of catches from tows made during the depletion experiment. Maximum likelihood methods are used to estimate parameters, derive confidence regions for parameters, and evaluate goodness of fit between data and the model. Data from an experiment involving Atlantic surfclams (Spisula solidissima) are used to demonstrate the model.

Des expériences d'épuisement nous permettent d'estimer l'efficacité des engins d'échantillonnage et la densité des organismes. Les modèles couramment utilisés pour analyser ces expériences font des présuppositions restrictives qui sont souvent violées. Nous présentons une nouvelle modélisation spatiale applicable aux invertébrés benthiques sessiles qui ne dépend pas de ces présuppositions restrictives. Le nouveau modèle (i) permet une flexibilité durant l'expérience pour choisir le site des échantillonnages successifs, (ii) ne requiert pas que les organismes ni les échantillons successifs soient répartis au hasard sur toute la surface expérimentale et (iii) permet que des organismes ciblés soient perdus ou ajoutés au cours de l'expérience. Le modèles traite la capture totale par échantillon comme la somme des captures de cellules plus petites avec des histoires d'échantillonnage différentes, mais connues. Un modèle binomial négatif sert à décrire la distribution des captures provenant des traits de récolte durant l'expérience d'épuisement. Des méthodes de vraisemblance maximale permettent d'estimer les paramètres, de déterminer les intervalles de confiance de ces paramètres et d'évaluer l'ajustement entre les données et le modèle. Des données provenant d'une expérience avec les mactres de l'Atlantique (Spisula solidissima) nous servent à faire la démonstration du modèle.[Traduit par la Rédaction]

Document Type: Research Article

Publication date: October 1, 2006

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more