Skip to main content

Studying the spatiotemporal variation of the littoral fish community in a large prealpine lake, using self-organizing mapping

Buy Article:

$50.00 plus tax (Refund Policy)


One of the most fundamental feature of freshwater systems is the spatiotemporal structure of their communities. In the present study, we used an artificial neural network model, i.e., self-organizing mapping, together with a likelihood ratio 2 statistic for proportions to investigate the influence of each factor of a complex sampling scheme (i.e., site, year, month, and time of day) on the littoral fish community of Lake Constance (south Germany). Based on self-organizing mapping, four clusters of samples were defined characterized by distinct fish communities. The samples gathered in clusters 1 and 2 were significantly related to the factors month and time of the day, while those in cluster 3 were related to the factors month and site and those in cluster 4 to each of the four factors. The results are discussed with regard to the temporal patterns of species succession in lakes and their similarities with the spatial patterns observable in streams, the importance of plasticity with regard to the fish nycthemeral preferences, the partitioning of habitat at a large spatial scale and its importance for the coexistence of species, and the effects of the reoligotro phica tion process in lakes.

L'une des caractéristiques fondamentales des écosystèmes d'eau douce est la structure spatio-temporelle de leurs communautés. Dans cette étude, nous avons utilisé un réseau de neurones artificiels du type carte auto-organisatrice, associé à des tests sur les proportions, afin de mettre en évidence l'influence de facteurs d'un plan d'échantillonnage complexe (site, année, mois et période de la journée) sur la communauté de poissons de la zone littorale du lac de Constance (sud de l'Allemagne). Les résultats de la carte auto-organisatrice nous ont permis de définir quatre groupes d'échantillons, caractérisés par des peuplements distincts de poissons. Les échantillons des groupes 1 et 2 étaient significativement liés aux facteurs mois et période de la journée, ceux du groupe 3 aux facteurs mois et site d'échantillonnage et ceux du groupe 4 à chacun des quatre facteurs. Les résultats ont été discutés en considérant les patrons de succession temporels observables en lac et leurs similarités avec les patrons spatiaux observables en cours d'eau, l'importance de la plasticité dans l'occupation du nycthémère, le partage de l'habitat à large échelle et son rôle dans la coexistence des espèces et les effets du processus de re-oligotrophisation en lac.

Document Type: Research Article

Publication date: 2005-10-01

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more