Skip to main content

A simulation model for designing groundfish trawl surveys

Buy Article:

$50.00 plus tax (Refund Policy)

Abstract:

This paper describes a convenient simulation model, based on the compound binomial-gamma distribution, to assist the planning and design of groundfish trawl surveys. The analysis uses swept-area density measurements from stratified tows to give a simple nonparametric biomass estimate. A parametric simulation model requires only three input parameters for each stratum, which can be estimated initially from past surveys or commercial fishery data. Analytical results provide intuitive algorithms for estimating variances, investigating tow allocation strategies, and exploring potential survey results. Simulations make it possible to compare the estimated biomass with its true value and to assess coverage properties of confidence intervals obtained from bootstraps. Bias correction and acceleration both improve the results, but small samples taken from populations with highly variable densities tend to produce underestimates of available biomass. The simulation framework allows easy adaptation to address broader issues, such as the design of a multispecies survey.

On trouvera ici un modèle de simulation commode, basé sur la distribution conjointe binomiale et gamma, pour aider à planifier et monter des inventaires au chalut de poissons de fond. L'analyse utilise des mesures de densité sur la surface échantillonnée tirées de pêches stratifiées pour produire une estimation simple non paramétrique de la biomasse. Un modèle de simulation paramétrique nécessite l'inclusion de seulement trois paramètres pour chaque strate, qui peuvent être estimés au départ à partir d'inventaires passés ou de données de la pêche commerciale. Les résultats de l'analyse fournissent des algorithmes intuitifs pour estimer les variances, pour évaluer les stratégies d'allocation des pêches et pour explorer les résultats potentiels de l'inventaire. Des simulations permettent de comparer la biomasse estimée à sa valeur réelle et d'évaluer les caractéristiques de couverture des intervalles de confiances obtenus par bootstrap. La correction d'erreurs et l'accélération améliorent les résultats, mais de petits échantillons tirés de populations à densité très variable ont tendance à sous-estimer la biomasse disponible. Le cadre de la simulation permet facilement des adaptations pour confronter des problèmes plus vastes, tels que la planification d'un inventaire impliquant plusieurs espèces.[Traduit par la Rédaction]

Document Type: Research Article

Publication date: 2003-06-01

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more