If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Global fish abundance estimation from regular sampling: the geostatistical transitive method

$50.00 plus tax (Refund Policy)

Buy Article:

Abstract:



This article deals with the estimation of fish biomass based on regular samplings. The geostatistical transitive method is a design-based spatially explicit method based on few and falsifiable assumptions concerning the sampling strategy. The falsifiability of a hypothesis corresponds to our capacity to control its adequacy to field data in practice. We first describe the basics of the method, mention the questions relative to the covariogram estimation, the units, and the projections of the coordinates, and explain how to fit the model to the experimental covariogram. We then apply the method to an ICES (International Council for the Exploration of the Sea) triennial mackerel egg survey, with regular sampling, and to a Moroccan octopus survey, with regular stratified sampling. To compare the present technique with existing methods, the number and the falsifiability of their respective hypotheses are considered in addition to the bias, the convergence, and the estimation variance. As is often the case, data are assumed to be synoptic, and we discuss two examples of spatiotemporal methods.

Cet article aborde la question de l'estimation de l'abondance globale d'une population à partir d'un échantillonnage régulier. La méthode géostatistique transitive est une méthode spatiale compatible avec de tels échantillonnages. Elle est basée sur un petit nombre d'hypothèses falsifiables (réfutables) qui portent sur la stratégie d'échantillonnage. On commence par rappeller les fondements théoriques de cette méthode, présenter les problèmes pratiques concernant l'estimation du covariogramme, le choix des unités et la projection des coordonnées et par donner des indications sur l'inférence des modèles. La méthode est ensuite appliquée à une campagne triennale CIEM d'estimations des œufs de maquereau basée sur un échantillonnage régulier et à une campagne marocaine d'évaluation du poulpe qui reposent sur un échantillonnage stratifié aléatoire. Afin de comparer l'approche transitive à d'autres méthodes existantes, le nombre et la falsifiabilité des hypothèses mises en jeux dans chacune des méthodes évoquées sont discutées en plus des propriétés de non biais, de convergence et de variance d'estimation. Comme souvent, l'approche transitive suppose que les données ont été récoltées en même temps. Ceci amène à mentionner deux exemples d'approches spatio-temporelles.

Document Type: Research Article

Publication date: December 1, 2002

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more