Skip to main content

Comparison of the frequentist properties of Bayes and the maximum likelihood estimators in an age-structured fish stock assessment model

Buy Article:

$50.00 plus tax (Refund Policy)


A simulation study was carried out for a separable fish stock assessment model including commercial and survey catch-at-age and effort data. All catches are considered stochastic variables subject to sampling and process variations. The results showed that the Bayes estimator of spawning biomass is a useful but slightly biased estimator for which the frequentist variance can be estimated by the posterior variance. Comparisons further show that the Bayes estimator is better than the maximum likelihood in the sense that it is less biased and, surprisingly, has a much lesser variance. The catch simulations were based on the North Sea plaice (Pleuronectes platessa) stock and fishery data.

Nous avons fait la simulation d'un modèle séparable d'évaluation des stocks de poissons qui inclut des données commerciales et des données d'inventaire sur les captures aux différents âges et sur les efforts de pêche. Toutes les captures sont considérées comme des variables stochastiques sujettes aux variations d'échantillonnage et de manipulation. Les résultats indiquent que l'estimateur bayésien de la biomasse des géniteurs est utile, mais qu'il comporte une faible distorsion; on peut déterminer la variance fréquentiste de l'estimateur à l'aide de la variance a posteriori. Des comparaisons montrent que l'estimateur bayésien est un meilleur estimateur que la vraisemblance maximale, parce qu'il comporte une erreur systématique moins importante et, de façon inattendue, une variance bien moindre. Les similuations de captures sont basées sur des données de stock et de pêche de Plies (Pleuronectes platessa) communes de la Mer du Nord.[Traduit par la Rédaction]

Document Type: Research Article

Publication date: January 1, 2002

More about this publication?
  • Published continuously since 1901 (under various titles), this monthly journal is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. Occasional supplements are dedicated to single topics or to proceedings of international symposia.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Sample Issue
  • Reprints & Permissions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more