Skip to main content

Numerical Analysis of Propeller During Heave Motion Near a Free Surface

Buy Article:

$20.00 plus tax (Refund Policy)

Abstract

The interaction between the free surface and the propeller during heave motion near the free surface was analyzed numerically using the Reynolds-Averaged Navier-Stokes (RANS) method. The coupling effect between the rotation and heave motions of the propeller was modeled using a motion equation developed in this study; the heave motion was simplified as a periodic motion based on the sinusoidal motion law; and the transfer of numerical values for unsteady flow fields was implemented using overset grid technology. A comparative analysis of the unsteady thrust coefficient and torque coefficient under different advance coefficient conditions was conducted, and the air ingestion phenomenon of the propeller was analyzed. The research highlighted the interaction between the coupled heave and rotation motions of the propeller and the free surface. The results showed that, when the advance coefficient was low, the hydrodynamic performance of the propeller during heave motion near a free surface was strongly influenced by the free surface and that a remarkable interaction existed between the propeller and the free surface. As the advance coefficient increased, the interaction between the propeller and the free surface weakened. The air ingestion that the propeller exerts upon the free surface during heave motion is a complex coupled superposition process. This phenomenon is correlated to the motion state and working time of the propeller, as well as the distance between the propeller and the free surface.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: air ingestion phenomenon; free surface; heave motion; overset grid; propeller

Document Type: Research Article

Publication date: 01 January 2017

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more