Skip to main content

Static and Fatigue Analysis of Composite Turbine Blades Under Random Ocean Current Loading

Buy Article:

$28.00 plus tax (Refund Policy)



The objective of this paper is to investigate how U.S. National Renewable Energy Laboratory (NREL)‐designed modeling tools commonly used for wind turbine blade design and analysis can be applied to the design of ocean current turbines (OCT). Design, static analysis, and fatigue life predictions of a horizontal-axis, ocean current turbine composite blade were investigated using NREL’s PreCom, BModes, AeroDyn, FAST with seawater conditions. PreComp was used to compute section properties of this OCT blade. BModes calculated mode shapes and frequencies of the blade. Loading on a turbine blade in the Gulf Stream at a South Florida location (26o4.3’N 79o50.5’W, 25-m depth) was calculated with AeroDyn. FAST was then used to obtain the dynamic response of the blade, including flap and edge bending moment distribution with respect to blade rotation. Static analysis was performed by using a combination of Sandia’s NuMAD and ANSYS. Palmgren-Miner’s cumulative fatigue damage model was employed with damage estimation based on the material fatigue property data in DOE/MSU Composite Material Fatigue Database. During service life, OCT blades are subjected to cyclic loads and random ocean current loading. Hence, the blades experience repeated and alternating stresses, which can lead to fatigue failure. These loads were weighted by rate of occurrence from a histogram analysis of in situ measurements conducted by the Southeast National Marine Renewable Energy Center (SNMREC).

Keywords: NREL modeling tools; composites; ocean current turbine blade; static and fatigue analyses

Document Type: Research Article


Publication date: March 1, 2013

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more