Skip to main content

Multiplatform Ocean Exploration: Insights From the NEEMO Space Analog Mission

Buy Article:

$20.00 plus tax (Refund Policy)


Since the beginning of space exploration, methods and protocols of exploration have been developed using space analogs on Earth to reduce research costs, develop safe deployment/retrieval protocols, and ready astronauts for hostile environments in less threatening settings. Space analogs are required as much as ever today as astronauts and scientists develop new tools and techniques for exploration, while working to address evolving mission objectives from low-earth orbit to deep-space exploration. This study examines coordinated human and robotic exploration at the Aquarius Underwater Habitat off of the coast of Key Largo, Florida, in support of the NEEMO 15 (NASA Extreme Environment Mission Operations) program. The exploration scheme presented in this work fuses (1) robotic precursor missions as a means of remote sensing data collection; (2) crowdsourcing to process immense amounts of data to identify key targets of interest that might be missed in the tight cycle of mission operations; and (3) human exploration to examine locations directly up close and collect physical samples that require involved sampling techniques. Autonomous underwater vehicles (AUVs) and single-person submersibles, called DeepWorkers™, were used as underwater analogs of robotic systems currently being used and human-operated vehicles (HOVs) proposed for use on a Near Earth Asteroid (NEA), the Moon, or Mars. In addition to operational lessons learned for space exploration that are directly applicable to ocean exploration, ocean floor mapping provides new levels of detail of benthic habitat critical for coral reef monitoring and management. Opportunistic (onsite adaptive) data sampling also took place by placing self-recording instrumentation onto each of the DeepWorkers, increasing the collection of scientific information during the submersible missions and contributing to mission planning for optimal and efficient use of expensive assets.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: AUVs; Aquarius Reef Base; Conch Reef; NASA; space analogs

Document Type: Research Article

Publication date: 2012-07-01

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more